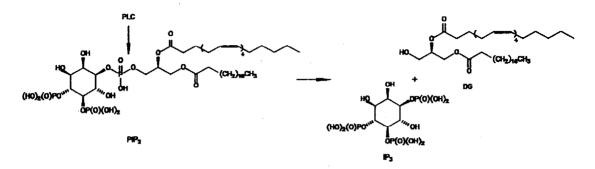
Synthesis of Some Thiophosphate Analogues (C-S-P) of Phosphatidylinositol

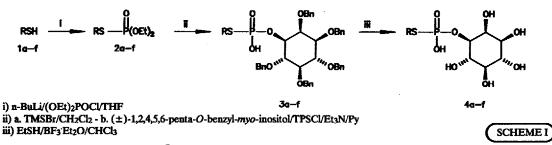
Maria A. Alisi, Mario Brufani, Luigi Filocamo^{*}, Gianluca Gostoli, Sperandina Lappa

Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Università "La Sapienza", Via degli Apuli 9, 00185 Roma (Italy)

Stefano Maiorana


Dipartimento di Chimica Organica e Industriale dell'Università, Via Venezian 21, 20133 Milano (Italy)

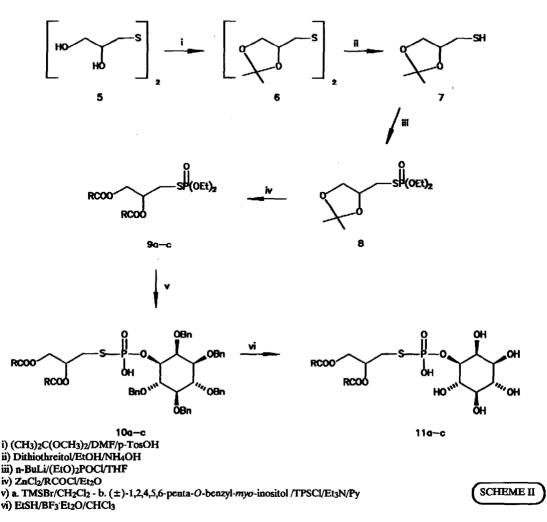
Maria C. Cesta, Enrico Ferrari, and Pier G. Pagella


Mediolanum Farmaceutici S.p.a., Via S. G. Cottolengo 31, 20143 Milano (Italy)

Abstract: the synthesis of analogues of phosphatidylinositol (PI), designed to show a novel mode of PIphospholipase C (PI-PLC) inhibition, is described.

Recent research on the role of inositol phospholipids in cellular signalling pathways¹ has revived interest in the syntheses of inositol phosphates and phosphatidylinositol (PI) analogues² that can modulate the important intracellular signal transduction system based on the metabolism of phosphatidylinositol. Inositol-specific phospholipase C (PI-PLC) is a key enzyme in this system¹ which acts on phosphatidyl-*myo*-inositol 4,5-bisphosphate (PIP₂) to yield the second messengers D-*myo*-inositol 1,4,5-trisphosphate (IP₃), which mediates the release of calcium ions from intracellular stores and diacylglycerol (DG), involved in the activation of protein kinase C. A complex pattern of events then occurs, many of which have been elucidated³.

To date, non-specific PLC inhibitors are known⁴, and only lately the syntheses of some PI and PIP₂ analogues as inhibitors of PLC have been accomplished⁵. Among them, the analogues of PIP₂ were found to inhibit PLC *in vitro* but are inactive in the assay with intact cells⁶.


Following our Italian patent⁷, we report here the synthesis of some thiophosphates analogues (C-S-P bond) of phosphatidylinositol as inhibitors of PI-PLC.

The racemic alkylphosphothiolyl-1-myo-inositol derivatives (4a-f) were synthesised as shown in Scheme I^8 . Alkylthiols 1a-f were reacted with n-BuLi in THF at 0°C for 30 min to generate the anion and then with diethyl phosphochloride at r.t. for 1 h, giving the diethyl alkylphosphothiolates 2a-f. These phosphothiolates were transesterified with trimethylsilylbromide in dry CH₂Cl₂ at r.t. for 6 h and, after evaporation of the solvent at reduced pressure, copuled under the influence of triisopropylbenzensulfonyl chloride (TPSCl, 4 eqiv) with (\pm)-1,2,4,5,6-penta-O-benzyl-myo-inositol⁹ in pyridine and triethylamine (6 eqiv) at r.t. for 24 h. The products 3a-f were purified by gradient elution (CHCl₃, CHCl₃/MeOH 95:5 and then 9:1) on chromatographic column of silica gel and debenzylated using BF₃-etherate in ethyl mercaptane¹⁰ (yields: see TABLE I).

R	Entry	Yield (from 1a-f)	Entry	Yield (from 2a-f)	Entry	Yield (from 3a-f)
CH3(CH2)17-	2a	95%	3 a	70%	4a	98%
CH3(CH2)15-	2b	93%	3b	70%	4b	98%
CH3(CH2)13-	2c	89%	3c	68%	4c	97%
CH3(CH2)11-	2d	85%	3d	67%	4đ	97%
CH3(CH2)7-	2e	87%	3e	65%	4 e	93%
CH3(CH2)3-	2f	85%	3f	62%	4f	92%

TABLE	[
-------	---

The synthesis of PI thioanalogues was performed as shown in Scheme II. rac-1,1'-Dithiobis(2,3-propandiol)¹¹ (5) was acetalated with 2,2-dimethoxypropane in the presence of pTsOH at r.t. for 3 h to obtain, after workup, the bis-acetal 6 (yield 95%). Reduction of disulfide 6 with dithiothreitol in EtOH/NH4OH (pH 9.6) at r.t. for 1h gave thiol 7 after extraction with CHCl3 and evaporation at reduced pressure of the solvent (yield 75%). The mercapto group was esterified like the n-alkyl derivatives (yield 95%) and the resulting phosphothiolate 8 was reacted with dry ZnCl2 and acyl chloride in dry ether at r.t. for 3 h affording the diacyl derivatives 9a-c after chromatography on silica gel

eluting with light petroleum/diethyl ether 1:1. The last two steps were performed like for the alkylphosphothiolates achieving 10a-c after condensation with pentabenzylinositol and 11a-c after debenzylation (yields: see TABLE II)¹².

R	Entry	Yield (from 8a-c)	Entry	Yield (from 9a-c)	Entry	Yield (from 10a-c)
CH3(CH2)14-	9a	64%	10a	35%	11a	91%
CH3(CH2)8-	9b	60%	10ь	33%	116	90%
CH3(CH2)6-	9c	55%	10c	31%	11c	87%

TABLE II

These synthetic routes provide versatile and convenient pathways to these stable analogues which possess interesting biological activity¹³. Adaption of these routes to a synthesis of chiral compounds of these analogues is now in progress.

REFERENCES AND NOTES

- 1. Berridge, M. J. and Irvine, R. F. Nature (London) 1989, 341, 197-205; Abdel-Latif, A. A. Pharmacol. Rev. 1986, 38, 227-272.
- Salamonczyk, G. M. and Bruzik, K. S. Tetrahedron Lett. 1990, 31, 2015-2016; Westerduin, P. ; Willems, H. A. M.; Van Boeckel, C. A. A. *ibid.* 1990, 31, 6919-6922; Dreef, C. E.; Elie, C. J. J.; Van der Marel, G. A.; Van Boom, J. H. *ibid.* 1991, 32, 955-958; Campbell, A. S. and Thatcher, G. R. J. *ibid.* 1991, 32, 2207-2210; Jiang, C.; Schedler, D. J. A.; Morris, P. E. Jr.; Zayed, A. A.; Baker, D. C. Carbohydrate Res. 1990, 207, 277-285.
- 3. Downes, C. P. Biochem. Soc. Trans. 1989, 17, 259-268.
- Nishikiori, T.; Okuyama, A.; Naganawa, H.; Takita, T.; Hamada, M.; Takeuchi, T.; Aoyagi, T.; Umazawa, H. J. Antibiot. 1984, 37, 426-427; Lipsky J. J. and Lietman, P. J. Farmacol. Exp. Ther. 1982, 220 287-292; Wightman, P. D.; Dahlgren, M. E.; Hall, J. C.; Davies, P.; Bonney, R. J. Biochem. J. 1981, 197, 523-526; Aoky, M.; Itezono, Y.; Shirai, H.; Nakayama, N.; Sakai, A.; Tanaka, Y.; Yamaguchi, A.; Shimma, N.; Yokose, K.; Seto, H. Tetrahedron Lett. 1991, 32, 4737-4740.
- 5. Massy, D. J. R. and Wyss, P. Helv. Chim. Acta 1990, 73, 1037-1057.
- Kaufmann, F.; Massy, D. J. R.; Pirson, W.; Wyss, P. Synthesis and Biological Evaluation of Inositol Derivatives as Inhibitors of Phospholipase C. In *Inositol Phosphates and Derivatives: Synthesis, Biochemistry, and Therapeutic Potential*; Reitz, A. B. Ed.; ACS Symposium series 463, 1991; pp. 202-213.
- Brufani, M.; Cesta, M. C.; Ferrari, E.; Filocamo, L.; Lappa, S.; Maiorana, S.; Pagella, P. Italian Pat. 191A000251 (1/2/1991).
- Very recently a synthesis of hexadecylphosphothioyl-1-myo-inositol for analytical purpose (following another pathway) was reported: Hendrickson, E. K.; Johnson, J. L.; Hendrickson, H. S. BioMed. Chem. Lett. 1991, 1, 615-618.
- 9. Gigg, R.; and Warren, C. D. J. Chem. Soc., C 1969, 2367-2371.
- 10. Fuji, K.; Ichikawa, K.; Node, M.; Fuijta, E. J. Org. Chem. 1979, 44, 1661-1664.
- 11. Cox, J. W.; Snyder, W.; Horrocks, L. A. Chem. Phys. Lipids 1979, 25, 369-380.
- 12. Compounds were characterised by 200 MHz ¹H-NMR, mass spectroscopy and C,H,P,S analysis.

13. To be reported elsewhere.

(Received in UK 22 April 1992)